Home
Class 12
MATHS
x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy...

`x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt2)log|(x + sqrt2y)/(x - sqrt2y)| = log|x| + C`
Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

the particular solution of (1 + x^(2))(dy)/(dx) + 2xy = (1)/(1 + x^(2)), y = 0 when x= 1 is

Find (dy)/(dx) given x^(2) + xy + y^(2) = 100 .

Find the order and degree, if defined, of each of the following differential equations: (i) (dy)/(dx) - cos x = 0 (ii) xy (d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2) - y (dy)/(dx) = 0 (iii) y''' + y^(2) + e^(y)' = 0

Solve (x+y)^(2)(dy)/(dx)=a^(2)

If m and n are the order and degree, respectively of the differential equation y((dy)/(dx))^(3) + x^(3)((d^(2)y)/(dx^(2)))^(2) - xy = sin x , then write the value of m + n.

If y = cos^(-1) x , show that (1 - x^2) (d^2y)/(dx^2) - x(dy)/(dx) = 0 .