Home
Class 12
MATHS
For any two vectors vecaandvecb , we alw...

For any two vectors `vecaandvecb` , we always have `|veca*vecb|le|veca||vecb|`(Cauchy- Schwartz inequality).

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vecaandvecb , we always have |veca+vecb|le|veca|+|vecb| (triangle inequality).

For non zero vectors veca,vecb, vecc (veca xx vecb). Vecc= |veca| |vecb||vecc| holds iff:

If |vecaxxvecb|=4 and |veca*vecb|=2 then |veca|^(2)|vecb|^(2)=

For any three vectors veca,vecbandvecc , prove that vectors veca-vecb,vecb-veccandvecc-veca are coplanar.

If two vectors veca and vecb such that |veca|=2|vecb|=3 and veca.vecb=4 . Find |veca-vecb| .

veca. (veca xx vecb)=

Find |vecb| ,if (veca+vecb) . (veca-vecb)=8 and |veca|=8|vecb| .

Find the angle between the two vectors veca and vecb such that |veca|=1,|vecb|=1 and veca.vecb=1