Home
Class 12
MATHS
Three vectors veca,vecbandvecc satisfy t...

Three vectors `veca,vecbandvecc` satisfy the condition `veca+vecb+vecc=vec0` . Evaluate the quantity `mu=veca*vecb+vecb*vecc+vecc*veca`, if `|veca|=3,|vecb|=4and|vecc|=2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then angle between veca and vecb is

The non-zero vectors veca, vecb and vecc are related by veca = 8 vecb and vecc=-7 vecb. Then the angle between veca and vecc is :

Three vectors satisfyi the relation vecA*vecB=0 and vecA*vecC=0 then vecA is parallel to

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=