Home
Class 12
MATHS
Find the value of x and y so that the ve...

Find the value of x and y so that the vectors `2hat(i)+3hat(j)` and `xhat(i)+yhat(j)` are equal .

Text Solution

Verified by Experts

The correct Answer is:
`=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors 2hat(i)-3hat(j)+4hat(k) and -4hat(i)+6hat(j)-8hat(k) are collinear.

The value of p such that the vectors hat(i) + 3hat(j) - 2hat(k), 2hat(i) - hat(j) + 4hat(k) and 3hat(i) + 2hat(j) + p hat(k) are coplanar is

Write the value of lambda so that the vectors vec(a) = 2hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other ?

Write the value of p for which the vectors 3hat(i) + 2hat(j) + 9hat(k) and hat(i) - 2p hat(j) + 3hat(k) are parallel vectors.

Find the value of lambda , if the point with position vectors 3hat(i) - 2hat(j) - hat(k), 2hat(i) + 3hat(j) - 4hat(k), -hat(i) + hat(j) + 2hat(k) and 4hat(i) + 5hat(j) + lambda hat(k) are coplanar.

For what value of 'a' the vectors 2hat(i) - 3hat(j) + 4hat(k) and ahat(i) + 6hat(j) - 8hat(k) are collinear ?

The magnitude of the vector 6hat(i) + 2hat(j) + 3hat(k) is ?

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .