Home
Class 12
MATHS
Find |veca|and|vecb|, if (veca+vecb)*(ve...

Find `|veca|and|vecb|`, if `(veca+vecb)*(veca-vecb)=8and|veca|=8|vecb|`.

Text Solution

Verified by Experts

The correct Answer is:
`(16sqrt(2))/(3sqrt(7)),(2sqrt(2))/(3sqrt(7))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find |vecb| ,if (veca+vecb) . (veca-vecb)=8 and |veca|=8|vecb| .

Find |vecb| if (veca + vecb).(veca - vecb) =8 and |veca| = 8|vecb|

Find |vecb| if ( veca +vecb) .( veca - vecb) =8 and |veca|= 8|vecb|

If (veca+vecb).(veca-vecb)=8 and |veca|=8(vecb) then find |vecb| .

veca. (veca xx vecb)=

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

(veca + vecb) xx (veca - vecb) is :

Let veca,vecb,vecc be the three vectors such that veca.(vecb+vecc)+vecb.(vecc+veca)+vecc.(veca+vecb)=0 and |veca|=1,|vecb|=4,|vecc|=8, then |veca+vecb+vecc| equals :

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=