Home
Class 12
MATHS
Evaluate the product (3vec(a)-5vec(b)).(...

Evaluate the product `(3vec(a)-5vec(b)).(2vec(a)+7vec(b))`.

Text Solution

Verified by Experts

The correct Answer is:
`6|veca|^(2)+11veca,vecb-35|vecb|^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If two vectors |vec(a)| = 2, |vec(b)| = 1 and vec(a).vec(b) = 1 , then find the value of (3vec(a) - 5vec(b)).(2vec(a) + 7vec(b)) .

If |vec(a) + vec(b)| = |vec(a) - vec(b)| then

Show that (vec(a)-vec(b))xx(vec(a)+vec(b))=2 (vec(a)xxvec(b)) .

Find |vec(a)| and |vec(b)| , if (vec(a)+vec(b)).(vec(a)-vec(b))=8 and |vec(a)|=8|vec(b)| .

Find |vec(b)| , if (vec(a) + vec(b)).(vec(a) -vec(b)) = 8 and |vec(a)| = 8|vec(b)|

If vec(a)=i-2 j + 3k, vec(b) is a vector such that vec(a).vec(b)= |vec(b)|^(2) |vec(a)-vec(b)|= sqrt7 , then |vec(b)| = ________

Three vectors overline(a),overline(b) and overline(c) satisfy the condition vec(a)+vec(b)+vec(c)=vec(0) evaluate mu=vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) if |vec(a)|=1,|vec(b)|=4 and |vec(c)|=2

If vec(a), vec(b),vec(c ) are three vectors such that |vec(a)| = 5, |vec(b)| = 12 and |vec(c )| = 13 and vec(a) + vec(b) + vec(c ) = vec(0) , find the value of vec(a).vec(b) + vec(b).vec(c )+vec(c ).vec(a) .

If [vec(a),vec(b),vec(c)] denotes the scalar triple product of the vectors vec(a),vec(b),vec(c) , then [vec(a)+vec(b),vec(b)+vec(c),vec(c)+vec(a)] is equal to