Home
Class 12
MATHS
Show that |veca|vecb+|vecb|veca is perp...

Show that `|veca|vecb+|vecb|veca` is perpendicular to `|veca|vecb-|vecb|veca`, for any two nonzero vectors `vecaandvecb`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two unit vectors such that veca + 2 vecb and 5 veca - 4 vecb are perpendicular to each other, then the angle between veca and vecb is :

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

If veca,vecb,vecc are mutually perpendicular unit vectors then |veca+vecb+vecc| is equal to

veca. (veca xx vecb)=

If veca=vecb+vecc , then is it true that |veca|=|vecb|+|vecc| ? Justify your answer .

Find |vecb| if ( veca +vecb) .( veca - vecb) =8 and |veca|= 8|vecb|

If |veca| = |vecb| = |veca + vecb| = 1 , then the value of |veca - vecb| is equal to

(veca + vecb) xx (veca - vecb) is :

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

If |veca+vecb|=|veca-vecb| , prove that vecaandvecb are perpendicular.