Home
Class 12
MATHS
Area of a rectangle having vertices A(-h...

Area of a rectangle having vertices `A(-hat(i)+(1)/(2)hat(j)+4hat(k)), B(hat(i)+(1)/(2)hat(j)+4hat(k)), C(hat(i)-(1)/(2)hat(j)+4hat(k)), and D(-hat(i)-(1)/(2)hat(j)+4hat(k))` is

A

`(1)/(2)`

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lambda , if the point with position vectors 3hat(i) - 2hat(j) - hat(k), 2hat(i) + 3hat(j) - 4hat(k), -hat(i) + hat(j) + 2hat(k) and 4hat(i) + 5hat(j) + lambda hat(k) are coplanar.

Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .

Find the sum of vectos a = hat(i)- 2hat(j)+hat(k),b=-2hat(i)+4hat(j)+5hat(k) and c=hat(i)-6hat(j)-7hat(k) .

The value of p such that the vectors hat(i) + 3hat(j) - 2hat(k), 2hat(i) - hat(j) + 4hat(k) and 3hat(i) + 2hat(j) + p hat(k) are coplanar is

Find the shortest distance between the lines. r=(hat(i)+2hat(j)+hat(k))+lambda(hat(i)-hat(j)+hat(k)) " and " r=(2hat(i)-hat(j)-hat(k))+mu(2hat(i)+hat(j)+2hat(k)) .

Find the vector and cartesian equations of a plane containing the two lines vec(r) = (2 hat(i) + hat(j) - 3 hat(k)) + lambda(hat(i) + 2 hat(j) + 5 hat(k)) and vec(r) = (3hat(i) + 3 hat(j) + 2 hat(k)) + lambda (3 hat(i) - 2 hat(j) + 5 hat(k)) . Also show that the line vec(r) = (2 hat(i) + 5 hat(j) + 2 hat(k)) + p (3 hat(i) - 2 hat(j) + 5 hat(k)) lies in the plane.

Find the shortest distance between two lines whose vector equations are vec(r) = (hat(i) + 2 hat(j) + 3 hat(k))+lambda(hat(i)- 3hat(j) + 2 hat(k)) and vec(r) = (4 hat(i) + 5 hat(j) + 6 hat(k))+ mu (2 hat(i)+3 hat(j) + hat(k)) .

Show that the four points A, B, C and D with position vectors 4hat(i) + 5hat(j) + hat(k) - hat(j) - hat(k), 3hat(i) + 9hat(j) + 4hat(k) and 4(-hat(i) + hat(j) + hat(k)) respectively are coplanar.