Home
Class 12
MATHS
Prove that (veca+vecb)*(veca+vecb)=|veca...

Prove that `(veca+vecb)*(veca+vecb)=|veca|^(2)+|vecb|^(2)`, if and only if `veca,vecb` are perpendicular , given `vecanevec0,vecbnevec0`.
Choose the correct answer in Exercises 16 to 19.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

veca. (veca xx vecb)=

(veca + vecb) xx (veca - vecb) is :

If (veca+vecb).(veca-vecb)=8 and |veca|=8(vecb) then find |vecb| .

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

Find |vecb| if (veca + vecb).(veca - vecb) =8 and |veca| = 8|vecb|

If |vecaxxvecb|=4 and |veca*vecb|=2 then |veca|^(2)|vecb|^(2)=

If |veca+vecb|=|veca-vecb| , prove that vecaandvecb are perpendicular.

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]

Find |vecb| ,if (veca+vecb) . (veca-vecb)=8 and |veca|=8|vecb| .