Home
Class 11
MATHS
((x+2)!)/((2x-1)!)*((2x+1)!)/((x+3)!)=(7...

((x+2)!)/((2x-1)!)*((2x+1)!)/((x+3)!)=(72)/(7)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve :((2x+3)!(x-1)!)/((x+1)!(2x+1)!)=7

The equation (2x^(2))/(x-1)-(2x +7)/(3) +(4-6x)/(x-1) +1=0 has the roots-

3(x+2)-2(x-1)=7

int (x^(2) +1)sqrt(x+1)dx is equal to a) ((x+1)^(7//2))/(7) - 2((x+1)^(5//2))/(5) + 2((x+1)^(3//2))/(3)+c b) 2[((x+1)^(7//2))/(7) - 2((x+1)^(5//2))/(5) + 2((x+1)^(3//2))/(3)]+c c) ((x+1)^(7//2))/(7) - 2((x+1)^(5//2))/(5) + c d) ((x+ 7)^(7//2))/(7) - 3((x+1)^(5//2))/(5) + 11(x+1)^(1//2)+c

((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

The equation (2x^(2))/(x-1)-(2x+7)/(3)+(4-6x)/(x-1)+1=0 has the roots

lim_(x rarr1)((7+x)^((1)/(3))-(3+x^(2))^((1)/(2)))/(x-1)