Home
Class 12
MATHS
tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=...

tan^(-1)((x)/(sqrt(a^(2)-x^(2))))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The simplest form of tan^(-1)((x)/(a+sqrt(a^(2)-x^(2)))) is :

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)(x/a) ,-a lt x lt a

d//dx[tan^(-1)((sqrt(x^(2)+a^(2))+x)/(sqrt(x^(2)+a^(2))-x))^(1//2)]

Differentiate tan^(-1){x/(a+sqrt(a^2-x^2))}, -a

Differentiate tan^(-1){x/(a+sqrt(a^2-x^2))},\ -a