Home
Class 10
MATHS
sin(B+C-A)+sin(C+A-B)-sin(A+B-C)=4cos A ...

sin(B+C-A)+sin(C+A-B)-sin(A+B-C)=4cos A cos B sin C

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A + B + C = 180^(@) prove that: (i) "sin" (B+C-A) + "sin"(C+ A-B) + sin (A + B-C) = 4 sin A sin B sin C (ii) cos(- A+B+C) + cos (A - B + C) + cos (A + B - C) = 1 + 4 cos A cos B cos C (iii) "tan" (B+C - A) + tan (C+A-B) + tan (A + B-C) = tan (B+C - A) tan (C+ A - B) tan (A+B-C)

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If cos(A+B+C)=cos A cos B cos C , then (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin 2B sin 2C)=

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A+B+C=180^(@), prove that sin2A+sin2B-sin2C=4cos A cos B sin C

Prove that: a) sin(A+B+C) + sin(A-B-C)+sin(A+B-C) + sin(A-B+C) = 4sinAcosBcosC b) cos(A+B+C)+cos(A+B-C)+cos(B+C-A)+cos(C+A-B)=4cosAcosBcosC