Home
Class 12
MATHS
If f(x)=root (3)(8x^(3)+mx^(2))-nx such ...

If `f(x)=root (3)(8x^(3)+mx^(2))-nx` such that `lim_(xrarroo)f(x)=1` then (A) `m+n=15` (B) `m-n=10` (C) `m-n=12` (D) `m+n=14`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[mx^(2)+n,x 1. For what integers m and n does both (lim)_(x rarr1)f(x)

If f(x)=lim_(m->oo) lim_(n->oo)cos^(2m) n!pix then the range of f(x) is

If lim_(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then the vlaue of (m)/(n) is

If lim_(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then the vlaue of (m)/(n) is

If f(x)={mx^(2)+n,x 1}. For what integers m and n does both lim_(x rarr0)f(x) and lim_(x rarr1)f(x) exist?

If f(x)=lim_(m rarr oo)lim_(n rarr oo)cos^(2m)n!pi x then the range of f(x) is

If f(x)=2x^(3)+mx^(2)-13x+n and 2 and 3 are 2 roots of the equations f(x)=0, then values of m and n are

If in the expansion f (1+x)^m(1-x)^n, the coefficient of x and x^2 are 3 and -6 respectively then (A) m=9 (B) n=12 (C) m=12 (D) n=9

If f(x)={(mx^2+n, x 1):} . For what integers m and n does both lim_(x rarr 0)f(x) and lim_(x rarr 1)f(x) exist?