Home
Class 12
CHEMISTRY
[" 86.Suppose the limit "L=lim(n rarr oo...

[" 86.Suppose the limit "L=lim_(n rarr oo)sqrt(n)int_(0)^(1)(1)/((1+x^(2))^(n))dx" exists and is larger than "(1)/(2)" .Then "],[[" (A) "(1)/(2)=4]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

int_(0)^(oo)(dx)/([x+sqrt(1+x^(2))]^(n)

lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =

lim_ (n rarr oo) int_ (0) ^ (2) (1+ (t) / (n + 1)) ^ (n) d