Home
Class 12
MATHS
यदि A+B+C=pi हो तो सिद्ध कीजिए कि - si...

यदि `A+B+C=pi` हो तो सिद्ध कीजिए कि -
`sin(B+2C)+sin(C+2A)+sin(A+2B)=4"sin"(B-C)/(2)*"sin"(C-A)/(2)*"sin"(A-B)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

If A+B+C=180^@ prove that: sin(B+2C)+sin(C+2A)+sin(A+2B)= 4 sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If A + B + C =180^@ , prove that : sin (B + 2C) + sin (C + 2A) + sin (A + 2B) = 4 sin frac (B-C)(2) sin frac (C-A)(2) sin frac (A-B)(2) .

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))