Home
Class 12
MATHS
[" Vectors "vec a" and "vec b" are incli...

[" Vectors "vec a" and "vec b" are inclined at angle."theta=120^(@)" .If "|vec a|=1,|vec b|=2," then "],[[(vec a+3vec b)times(3vec a-vec b)]^(2)" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a and vec b are inclined at an angle theta=30^(@) If |vec a|=1,|vec b|=2 then |(vec a+3vec b)xx(3vec a-vec b)|^(2)=

Vectors vec a and vec b are inclined at an angle theta=120^@ . If |vec a|=1 |vec b|=2 then [(vec a+ 3 vec b) times (3 vec a - vec b)]^2 is a)190 b)275 c)300 d)192

Vectors vec a\ a n d\ vec b are inclined at angel theta=120^0 . If | vec a|=1,\ | vec b|=2,\ then [( vec a+3 vec b)xx(3 vec a- vec b)]^2 is equal to 300 b. 235 c. 275 d. 225

Vectors vec a\ a n d\ vec b are inclined at angel theta=120^0 . If | vec a|=1,\ | vec b|=2,\ then [( vec a+3 vec b)xx(3 vec a- vec b)]^2 is equal to 300 b. 235 c. 275 d. 225

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

The angle between vec a and vec b is 120^(@) . If |vec a|=3,|vec b|=4 , then the length of the vector 2vec a-(3vec b)/(2) is equal to

If vec a and vec b are unit vectors inclined to x-axos at angle 30^(@) and 120^(@) then |vec a+vec b|

If vec a and vec b are two vectors of magnitude 1 inclined at 120^(@), then find the angle between vec b and vec b-vec a .

If vec a and vec b are unit vectors,and theta is the angle between them,then |vec a-vec b|=