Home
Class 14
MATHS
(13+2sqrt(5))^(2)=?sqrt(5)+189...

`(13+2sqrt(5))^(2)=?sqrt(5)+189`

Promotional Banner

Similar Questions

Explore conceptually related problems

The following are the steps involved in finding the value of x-y from (sqrt(8)-sqrt(5))/(sqrt(8)+sqrt(5))=x-ysqrt(40) . Arrange them in sequential order. (A) (13-2sqrt(40))/(8-5)=x-ysqrt(40) (B) ((sqrt(8))^(2)+(sqrt(5))^(2)-2(sqrt(8))(sqrt(5)))/((sqrt(8))^(2)-(sqrt(5))^(2))=x-ysqrt(40) (C) x-y=(11)/(3) (D) x=(13)/(3) and y=(2)/(3) (E) ((sqrt(8)-sqrt(5))(sqrt(8)-sqrt(5)))/((sqrt(8)+sqrt(5))(sqrt(8)-sqrt(5)))=x-ysqrt(40)

sin[(1)/(2)cot^(-1)((2)/(3))]= sqrt((sqrt(13)-2)/(2sqrt(13))) (2+sqrt(13))/(2sqrt(13)) sqrt((2-sqrt(13))/(2sqrt(13))) (2-sqrt(13))/(2sqrt(13))

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of the determinant, " "|{:(sqrt(13)+sqrt(3), 2sqrt(5), sqrt(5)), (sqrt(15)+sqrt(26), 5, sqrt(10)), (3+sqrt(65), sqrt(15), 5):}| is :a) 5(sqrt(6)-5) b) 5sqrt(3)(sqrt(6)-5) c) sqrt(5)(sqrt(6)-sqrt(3)) d) sqrt(2)(sqrt(7)-sqrt(5))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

The simplest rationalising factor of 2sqrt(5)-sqrt(3) is 2sqrt(5)+3( b) 2sqrt(5)+sqrt(3)(c)sqrt(5)+sqrt(3) (d) sqrt(5)-sqrt(3)

If G is the centroid of triangle ABC and BC=3,CA=4 AB=5 then BG= (sqrt(13))/(3) (2sqrt(13))/(3) sqrt(13) (4sqrt(13))/(3)

If a=(2+sqrt(5))/(2-sqrt(5)) and b=(2-sqrt(5))/(2+sqrt(5)) then find value of a+b and b=(2-sqrt(5))/(2+sqrt(5)) then find

x=sqrt(2+sqrt(5))+sqrt(2-sqrt(5)) and y=sqrt(2+sqrt(5))-sqrt(2-sqrt(5)) then evaluate x^(2)+y^(2)