Home
Class 11
MATHS
If A + B + C = π , Prove that ...

If A + B + C = π , Prove that `sin^2 A+sin^2 B-sin^2 C=2sin Asin BcosC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B-sin^2 C=2 sin A sin B cos C .

If A + B + C =pi/2 , prove that : sin^2 A +sin^2 B+sin^2 C= 1-2 sin A sin B sin C .

If A + B + C =180^@ , prove that : sin^2 A- sin^2 B+ sin^2 C=2 sin A cos B sinC .

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A + B + C =pi/2 , prove that : cos^2 A +cos^2 B+cos^2 C= 2+2 sin A sin B sin C .

Prove that in a A B C ,sin^2A+sin^2B+sin^2C<=9/4dot

Prove that in a A B C ,sin^2A+sin^2B+sin^2C<=9/4dot

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C