Home
Class 12
MATHS
" 1.If "x sqrt(1-y^(2))+y sqrt(1-x^(2))=...

" 1.If "x sqrt(1-y^(2))+y sqrt(1-x^(2))=0," show that "(dy)/(dx)=(-1)/((1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , show that, (dy)/(dx)=(sqrt(1-y^(2)))/(sqrt(1-x^(2))) .