Home
Class 11
MATHS
Prove that in triangle A B C ,cos^2A+cos...

Prove that in triangle `A B C ,cos^2A+cos^2B-cos^2C=1-2sinAsinBcosCdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in triangle ABC , cos^(2)A+cos^(2)B-cos^(2)C=1-2sinAsinBcosC .

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A + B + C =pi , prove that : cos 2A + cos 2B -cos 2C= 1-4sin A sin B cos C .

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1

Prove that in a triangle ABC, bc cos A + ca cos B +ab cos C= 1/2(a^2+b^2+c^2)

If A+B+C=180^@ ,prove that cos^2A+cos^2B+cos^2C=1-2cos Acos B cos C .

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C