Home
Class 11
MATHS
sin^2(A/2) +sin^2(B/2)-sin^2(C/2)=1-2 co...

`sin^2(A/2) +sin^2(B/2)-sin^2(C/2)=1-2 cosA/2 cos B/2 sin C/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

Prove that sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

In triangleABC,A+B+C=pi ,show that sin^2( A/2)+sin^2 (B/2)-sin^2 (C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

A+B+C=pi ,prove that sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If A, B, C are angles of a triangle, then prove that sin^(2)""A/2+sin^(2)""B/2-sin^(2)""C/2=1-2cos""A/2cos""B/2sin""C/2 .