Home
Class 12
MATHS
If |z-4/2z|=2 then the least of |z| is (...

If `|z-4/2z|=2` then the least of `|z|` is (A) `sqrt)5)=-1` (B) `sqrt(5)-2` (C) `sqrt(5)` (D) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3)+""1 (2) sqrt(5)+""1 (3) 2 (4) 2""+sqrt(2)

Let z_1=6+i and z_2=4-3i . If z is a complex number such thar arg ((z-z_1)/(z_2-z))= pi/2 then (A) |z-(5-i)=sqrt(5) (B) |z-(5+i)=sqrt(5) (C) |z-(5-i)|=5 (D) |z-(5+i)|=5

Let z_1=6+i and z_2=4-3i . If z is a complex number such thar arg ((z-z_1)/(z_2-z))= pi/2 then (A) |z-(5-i)=sqrt(5) (B) |z-(5+i)=sqrt(5) (C) |z-(5-i)|=5 (D) |z-(5+i)|=5

Let the complex numbers z of the form x+iy satisfy arg ((3z-6-3i)/(2z-8-6i))=pi/4 and |z-3+i|=3 . Then the ordered pairs (x,y) are (A) (4- 4/sqrt(5), 1+2/sqrt(5)) (B) (4+5/sqrt(5),1-2/sqrt(5)) (C) (6-1) (D) (0,1)

Let the complex numbers z of the form x+iy satisfy arg ((3z-6-3i)/(2z-8-6i))=pi/4 and |z-3+i|=3 . Then the ordered pairs (x,y) are (A) (4- 4/sqrt(5), 1+2/sqrt(5)) (B) (4+5/sqrt(5),1-2/sqrt(5)) (C) (6-1) (D) (0,1)

If |z-(1/z)|=1, then a. (|z|)_(m a x)=(1+sqrt(5))/2 b. (|z|)_(m in)=(sqrt(5)-1)/2 c. (|z|)_(m a x)=(sqrt(5)-2)/2 d. (|z|)_(m in)=(sqrt(5)-1)/(sqrt(2))

If |z-(1/z)|=1, then a. (|z|)_(m a x)=(1+sqrt(5))/2 b. (|z|)_(m in)=(sqrt(5)-1)/2 c. (|z|)_(m a x)=(sqrt(5)-2)/2 d. (|z|)_(m in)=(sqrt(5)-1)/(sqrt(2))

The greatest value of the modulus of the complex number ' z ' satisfying the equality |z+1/z|=1 is: (-1+sqrt(5))/2 (b) sqrt((3+sqrt(5))/2) sqrt((3-sqrt(5))/2) (d) (sqrt(5)+1)/2

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)