Home
Class 12
MATHS
The vectors vec a and vec b are not...

The vectors ` vec a` and ` vec b` are not perpendicular and ` vec c` and ` vec d` are two vectors satisfying : ` vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0` . Then the vector ` vec d` is equal to : (1) ` vec b-(( vec bdot vec c)/( vec adot vec d)) vec c` (2) ` vec c+(( vec adot vec c)/( vec adot vec b)) vec b` (3) ` vec b+(( vec bdot vec c)/( vec adot vec b)) vec c` (4) ` vec c-(( vec adot vec c)/( vec adot vec b)) vec b`

Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""X vec c"" =vec b""X vec d""=""a n d"" vec adot vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

The vectors vec(a) and vec(b) are not perpendicular and vec(c ) and vec(d) are two vectors satisfying vec(b) xx vec(c )= vec(b) xx vec(d) and vec(a).vec(d)= 0 . Then the vector vec(d) is equal to

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a is perpendicular to vec b and vec r is non-zero vector such that p vec r+( vec rdot vec a) vec b= vec c , then vec r= vec c/p-(( vec adot vec c) vec b)/(p^2) (b) vec a/p-(( vec cdot vec b) vec a)/(p^2) vec a/p-(( vec adot vec b) vec c)/(p^2) (d) vec c/(p^2)-(( vec adot vec c) vec b)/p

If vec a is perpendicular to vec b and vec r is non-zero vector such that p vec r+( vec rdot vec a) vec b= vec c , then vec r= vec c/p-(( vec adot vec c) vec b)/(p^2) (b) vec a/p-(( vec cdot vec b) vec a)/(p^2) vec a/p-(( vec adot vec b) vec c)/(p^2) (d) vec c/(p^2)-(( vec adot vec c) vec b)/p