Home
Class 10
MATHS
‘O’ is any point in the interior of a tr...

‘O’ is any point in the interior of a triangle ABC. If ` OD bot BC, OE bot`AC and OF `bot` AB, show that
(i) `OA^(2) + OB^(2) + OC^(2) - OD^(2) - OE^(2) - OF^(2) = AF^(2) + BD^(2) + CE^(2)`
(ii) `AF^(2) + BD^(2) + CE^(2) = AE^(2) + CD^(2) + BE^(2)`.

Promotional Banner

Topper's Solved these Questions

  • SIMILAR TRIANGLES

    NCERT TAMIL|Exercise OPTIONAL EXERCISE|6 Videos
  • SIMILAR TRIANGLES

    NCERT TAMIL|Exercise TRY THIS|5 Videos
  • SIMILAR TRIANGLES

    NCERT TAMIL|Exercise EXERCISE - 8.3|6 Videos
  • SETS

    NCERT TAMIL|Exercise Try This|9 Videos
  • STATISTICS

    NCERT TAMIL|Exercise THINK AND DISCUSS|8 Videos

Similar Questions

Explore conceptually related problems

In AD bot BC , prove that AB^(2)+CD^(2)=BD^(2)+AC^(2)

In the given fig. if AD bot BC Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2) .

If 'O' is any point in the interior of rectangle ABCD, then prove that : OB^(2) + OD^(2) = OA^(2) + OC^(2)

If OABC is a tetrahedron such that OA^2 + BC^2 = OB^2 + CA^2 = OC^2 + AB^2 then

D is the mid point of side BC and AE bot BC . If BC=a, AC= b, AB=c, ED=x, AD=p and AE=h, prove that (i) b^(2)=p^(2)+ax+(a^(2))/(4) (ii) c^(2)=p^(2)-ax+(a^(2))/(4) (iii) b^(2)+c^(2)=2p^(2)+(a^(2))/(2)

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot ©/(2)

In Delta ABC, "seg" AD bot "seg" BC, DB = 3CD . Prove that: 2 AB^(2) = 2AC^(2) + BC^(2)

In adjoining figure, seg AD bot side BC, B-D-C. Prove that AB^(2) + CD^(2) = BD^(2) + AC^(2)