Home
Class 12
MATHS
Show that (i) sin^(-1)(2xsqrt(1-x^(2))...

Show that
(i) `sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))`
(ii) `sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1`

Text Solution

Verified by Experts

The correct Answer is:
(i) `2sin^(-1)x` (ii) `2cos^(-1)x`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TAMIL|Exercise EXERCISE 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TAMIL|Exercise EXERCISE 2.2|17 Videos
  • INTEGRALS

    NCERT TAMIL|Exercise EXERCISE 7.12|44 Videos
  • LINEAR PROGRAMMING

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE|5 Videos

Similar Questions

Explore conceptually related problems

(x sin^(-1) x)/(sqrt(1 - x^(2)))

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

cos(sin^(-1)(x/(sqrt(1+x^(2))))) is :

Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Evaluate: int_0^1 1/(sqrt(1-x^2))sin^(-1)(2xsqrt(1-x^2))dxdot