Home
Class 12
MATHS
Let A=[(0,1),(0,0)], show that (aI+bA)^(...

Let `A=[(0,1),(0,0)]`, show that `(aI+bA)^(n)=a^(n)I+na^(n-1)bA`, where I is the identity matrix of order 2 and `n in N`.

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NCERT TAMIL|Exercise EXERCISE 3.4|18 Videos
  • LINEAR PROGRAMMING

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE|5 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise EXERCISE 10.9|25 Videos

Similar Questions

Explore conceptually related problems

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I

If I is the unit matrix of order n, where kne0 is a constant, then adj(k)…………….

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

If (I-A)^(-1)=I+A+A^2+...+A^7, then A^n=O , where n is

If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an identity matrix, prove theat det (M-I)=0.

Show that log_a N + log (1)/(a)N=0