Home
Class 12
MATHS
Find the minor and cofactors of all the ...

Find the minor and cofactors of all the elements of the determinants `{:[( 1,-2),(4,3)]:}`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT TAMIL|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT TAMIL|Exercise EXERCISE 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Find minors and cofactors of the elements of the determinant {:[( 2,-3,5),( 6,0,4),( 1,5,-7)]:} and verify that a_11 A_31+ a_12A_32+a_13A_33=0

Write Minors and Cofactors of the elements of following determinants: (i) {:[( 2,-4),(0,3)]:}" (ii) " {:[( a,c),( b,d) ]:}

Find minors and cofactors of the elements a_11 ,a_21 in the determinant Delta= {:[( a_11,a_12,a_13),( a_21,a_22,a_23),( a_31,a_32,a_33) ]:}

Find the minor of elements 6 in the determinants Delta = {:[( 1,2,3),(4,5,6),(7,8,9)]:}

Evaluate the determinants. {:[( 2,4),( -5,-1) ]:}

Find the value of determinate : |{:(5,7),(2,4):}|

if A_(1) ,B_(1),C_(1) ……. are respectively the cofactors of the elements a_(1) ,b_(1),c_(1)…… of the determinant Delta = |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}|, Delta ne 0 then the value of |{:(B_(2),,C_(2)),(B_(3),,C_(3)):}| is equal to

Evaluate the determinant Delta = {:[(1,2,4),(-1,3,0),( 4,1,0)]:}

Find the element in second row and third column of the matrix [(1, -2, 3), (2, 1, 5)] is _____.

Let R be the realtion defined in the set A = {1,2,3,4,5,6,7} by R ={(a,b): both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1,3,5,7} are related to each other and all the elements of the subset {2,4,6} are related to each other, but no element of the subset {1,3,5,7} is related to any element of the subset {2,4,6}.

NCERT TAMIL-DETERMINANTS -Miscellaneous Exercises on Chapter 4
  1. Find the minor and cofactors of all the elements of the determinants {...

    Text Solution

    |

  2. Prove that the determinant {:[( x, sin theta ,cos theta ),( -sin thet...

    Text Solution

    |

  3. Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( ...

    Text Solution

    |

  4. Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),...

    Text Solution

    |

  5. If a,b and c are real numbers, and Delta ={:[( b+c,C+a,a+b),( c+a,a...

    Text Solution

    |

  6. Solve the equation {:[( x+a,x,x),(x,x+a,x),(x,x,x+a) ]:}=0,ane 0

    Text Solution

    |

  7. Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2...

    Text Solution

    |

  8. If A^(-1) ={:[( 3,-1,1),(-15,6,-5),(5,-2,2) ]:}and B= {:[( 1,2,-2),( -...

    Text Solution

    |

  9. Let A = {:[( 1,2,1),(2,3,1),(1,1,5) ]:} Verify that (A^(-1) )^(-1) =...

    Text Solution

    |

  10. Evaluate {:[( x,y , x+y),( y,x+y,x),( x+y,x,y)]:}

    Text Solution

    |

  11. Evaluate {:[(1,x,y),( 1,x+y,y),( 1,x,x+y)]:}

    Text Solution

    |

  12. Using properties of determinants in Exercises prove that : {:[( alph...

    Text Solution

    |

  13. {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(3)),( z,z^(2) , 1+pz^(3)...

    Text Solution

    |

  14. solve {:[( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) ]:} = 3( a+...

    Text Solution

    |

  15. {:[( 1,1+p,1+p+q),( 2,3+2p,4+3p+2q),( 3,6+3p,10+6p+3q)]:}=1

    Text Solution

    |

  16. Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  17. Solve system of linear equations , using matrix method 2x+ 3y + ...

    Text Solution

    |

  18. If a,b,c are in A.P. then the determinant {:[( x+2,x+3,x+2a),( x+3,...

    Text Solution

    |

  19. If x,y,z are nonzero real number , then the inverse of matrix A= {:[( ...

    Text Solution

    |

  20. Let A={:[( 1,sin theta , 1),( -sin theta , 1, sin theta ),( -1 ,-sin ...

    Text Solution

    |