Home
Class 12
MATHS
By using properties of determinants , s...

By using properties of determinants , show that : ` {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2) `

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT TAMIL|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT TAMIL|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT TAMIL|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding {:[( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) ]:} =4a^(2) b^(2) c^(2)

By using properties of determinants , show that : {:[( 1+a^(2) -b^(2) ,2ab , -2b),( 2ab, 1-a^(2) +b^(2) , 2a),( 2b, -2a, 1-a^(2) -b^(2)) ]:}=( 1+a^(2) +b^(2)) ^(3)

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

By using properties of determinants , show that : (i) {:[( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))]:}=(a-b)(b-c) (c-a) (ii) {:[( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))]:} =( a-b) (b-c)( c-a) (a+b+c)

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Show that |{:(a^2 + x^2 , ab, ac),(ab, b^2 + x^2 , bc),(ac, bc, c^2 +x^2):}| is divisible by x^4

Using the property of determinants and without expanding {:[( 1,bc,a(a+c) ),(1,ca,b( c+a)) ,( 1,ab,c(a+b) )]:}=0

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(2) .

Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).