Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that ` {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:} `

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT TAMIL|Exercise EXERCISE 4.6|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant , prove that |(s,a^(2),b^(2)+c^(2)),(s,b^(2),c^(2)+a^(2)),(s,c^(2),a^(2)+b^(2))|=0

Without expanding the determinant prove that |[s,a^(2),b^(2)+c^(2)],[s,b^(2),c^(2)+a^(2)],[s,c^(2),a^(2)+b^(2)]|=0

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Using the property of determinants and without expanding {:[( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) ]:} =4a^(2) b^(2) c^(2)

Prove that |(1/a^(2),bc,b+c),(1/b^(2),ca,c+a),(1/c^(2), ab, a+b)|=0

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

By using properties of determinants , show that : (i) {:[( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))]:}=(a-b)(b-c) (c-a) (ii) {:[( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))]:} =( a-b) (b-c)( c-a) (a+b+c)

NCERT TAMIL-DETERMINANTS -Miscellaneous Exercises on Chapter 4
  1. Prove that the determinant {:[( x, sin theta ,cos theta ),( -sin thet...

    Text Solution

    |

  2. Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( ...

    Text Solution

    |

  3. Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),...

    Text Solution

    |

  4. If a,b and c are real numbers, and Delta ={:[( b+c,C+a,a+b),( c+a,a...

    Text Solution

    |

  5. Solve the equation {:[( x+a,x,x),(x,x+a,x),(x,x,x+a) ]:}=0,ane 0

    Text Solution

    |

  6. Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2...

    Text Solution

    |

  7. If A^(-1) ={:[( 3,-1,1),(-15,6,-5),(5,-2,2) ]:}and B= {:[( 1,2,-2),( -...

    Text Solution

    |

  8. Let A = {:[( 1,2,1),(2,3,1),(1,1,5) ]:} Verify that (A^(-1) )^(-1) =...

    Text Solution

    |

  9. Evaluate {:[( x,y , x+y),( y,x+y,x),( x+y,x,y)]:}

    Text Solution

    |

  10. Evaluate {:[(1,x,y),( 1,x+y,y),( 1,x,x+y)]:}

    Text Solution

    |

  11. Using properties of determinants in Exercises prove that : {:[( alph...

    Text Solution

    |

  12. {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(3)),( z,z^(2) , 1+pz^(3)...

    Text Solution

    |

  13. solve {:[( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) ]:} = 3( a+...

    Text Solution

    |

  14. {:[( 1,1+p,1+p+q),( 2,3+2p,4+3p+2q),( 3,6+3p,10+6p+3q)]:}=1

    Text Solution

    |

  15. Without expanding evaluate the determinant |(sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  16. Solve system of linear equations , using matrix method 2x+ 3y + ...

    Text Solution

    |

  17. If a,b,c are in A.P. then the determinant {:[( x+2,x+3,x+2a),( x+3,...

    Text Solution

    |

  18. If x,y,z are nonzero real number , then the inverse of matrix A= {:[( ...

    Text Solution

    |

  19. Let A={:[( 1,sin theta , 1),( -sin theta , 1, sin theta ),( -1 ,-sin ...

    Text Solution

    |