Home
Class 12
MATHS
xy = log y + C : y' = (y^(2))/(1 - xy)(x...

`xy = log y + C : y' = (y^(2))/(1 - xy)(xy ne 1)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise EXERCISE - 9.3|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise EXERCISE - 9.4|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TAMIL|Exercise EXERCISE - 9.1|12 Videos
  • DETERMINANTS

    NCERT TAMIL|Exercise Miscellaneous Exercises on Chapter 4|19 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    NCERT TAMIL|Exercise EXERCISE 8.8|15 Videos

Similar Questions

Explore conceptually related problems

Verify that the given functions ( explicit or implicit ) is a solution of the corresponding differential equation : xy=logy+K:y'=(y^(2))/(1-xy)(xyne1)

If u = log ((x ^(2) y + y ^(2) x)/(xy)) then x (del u)/( del x) + y (del u)/(del y)=

(dy)/(dx) = (x^(2)+y^(2))/(xy)

For each of the functions find the f _(x), f _(y), and show that f _(xy) = f _(yx). f (x,y) = cos (x ^(2) - 3xy )

Verify the differential equation y = x sin x : xy' = y + x sqrt(x^(2) - y^(2))(x ne 0 and x gt y or x lt -y)

If u=log((x^(2) + y^(2))/(xy)) , then

Verify the differential equation y = Ax : xy' = y (x ne 0)

If f (x) = cos ( log _e x ) then f(x) . f(y) - (1)/(2) [f(y/x ) + f (xy)] has the value