Home
Class 12
MATHS
Find lambdaandmu if (2hati+6hatj+27hatk)...

Find `lambdaandmu` if `(2hati+6hatj+27hatk)xx(hati+lambdahatj+muhatk)=vec0`.

Text Solution

Verified by Experts

The correct Answer is:
`3,(27)/(2)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT TAMIL|Exercise Miscellaneous Exercise on chapter 10|19 Videos
  • VECTOR ALGEBRA

    NCERT TAMIL|Exercise EXERCISE 10.3|18 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY-II

    NCERT TAMIL|Exercise EXERCISE 5.6|25 Videos

Similar Questions

Explore conceptually related problems

Show that the lines vec r = hati + hatj + t(hati - hatj +3hatk) and vecr = 2hati + hatj -hatk + s(hati + 2hatj -hatk) intersect . Find the point of intersection.

Find the angle between the line vecr=(2hati-hatj+2hatk)+t(hati+2hatj-2hatk) and the plane vecr*(6hati+3hatj+2hatk)=8 .

The line through hati+3hatj+2hatk and perpendicular to the lines vecr=(hati+2hatj-hatk)+lamda(2hati+hatj+hatk) and vecr=(2hati+6hatj+hatk)+mu(hati+2hatj+3hatk) is

Find the angle between the lines vecr=hati-hatj+hatk+lambda(2hati-2hatj+hatk) and vecr=2hati-hatj+2hatk+mu(hati+hatj+2hatk) .

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lambda(hati-hatj+hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk)

Find the angle between the line vecr=(hati+2hatj-hatk)+lamda(hati-hatj+hatk) and the plane ver.(2hati-hatj+hatk)=4

Find the shortest distance between the lines vecr=(-hati+5hatj)+lambda(-hati+hatj+hatk) and vecr=(-hati-3hatj+2hatk)+mu(3hati+2hatj+hatk)

The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is

If the lines vecr-(hati+hatj+hatk) xx (1-p)hati+3hatj-2hatk=0 and (vecr-(3hati+hatj-5hatk)) xx (3-p)hati+4hatj-8hatk=0 are coplanar then the value of p is