Home
Class 12
MATHS
A function f (x) is given by the equati...

A function `f (x)` is given by the equation , `x^(2)f'(x)+2x `
`f(x)-x+1=0 ( x !=0)`. If `f(1)=0` ,then find the intervals of monotonocity of f.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the interval of monotonocity of the function f(x)=(|x-1|)/(x^(2))

Separate the intervals of monotonocity for the function f(x)=x^2e^(-x)

Separate the intervals of monotonocity for the function f(x)=x^2e^(-x)

Separate the intervals of monotonocity for the function f(x)=x^2e^(-x)

If f(x)=(x-1)^2-x+1 , then find f(0) .

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then find the value of f(log_(e)2) is