Home
Class 12
MATHS
lim(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^...

`lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(y->o)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

a=lim_(xrightarrow0)(sqrt(1+sqrt(1+x^4))-sqrt2)/(x^4),b=lim_(xrightarrow0)(sin^2x)/(sqrt2-(sqrt(1+cosx)) find ab^3

lim_(yto0^(+))(3sqrt(y)+3sqrt(y^(2))-4sqrt(y^(3)))/(3sqrt(y)+y +4sqrt(y^(3)) =………

lim_(y->0)[(sqrt(1-y^2)-sqrt(1+y^2))/y^2]

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))