Home
Class 12
MATHS
If a, b gt 0 prove that [(1+a)(1+b))^3>3...

If `a, b gt 0` prove that `[(1+a)(1+b))^3>3^3a^2b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b = 1, a gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b - 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b = 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b + c = 0 , then prove that (a^2+b^2+c^2)/(a^3+b^3+c^3)+2/3(1/a+1/b+1/c)=0

if agtbgtcgt0 ,then prove that (a+b)/2gt(a+b+c)/3gt(b+c)/2

If a+b+c=0 , then prove that (b+c)^2/(3bc )+ (c+a)^2/(3ca )+ (a+b)^2/(3ab )=1

If x = a^(1/3) b^(-1/3) + a^(-1/3) b^(1/3) then prove that a(bx^(3) - 3bx -a) = b^(2)