Home
Class 12
MATHS
यदि log(xy)=x^(2)+y^(2) हो तो सिद्ध की...

यदि `log(xy)=x^(2)+y^(2)` हो तो सिद्ध कीजिये की `(dy)/(dx)=y(2x^(2)-1)/(x(1-2y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x(x^(2)+1)(dy)/(dx)=y(1-x^(2))+x^(2)ln x

(1-xy+x^(2)y^(2))dx=x^(2)dy

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

Find (dy)/(dx) , when: x^(2)+y^(2)=log(xy)

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)