Home
Class 12
MATHS
f is a strictly monotonic differentiabl...

`f` is a strictly monotonic differentiable function with `f^(prime)(x)=1/(sqrt(1+x^3))dot` If `g` is the inverse of `f,` then `g^(x)=` a.`(2x^2)/(2sqrt(1+x^3))` b. `(2g^2(x))/(2sqrt(1+g^2(x)))` c. `3/2g^2(x)` d. `(x^2)/(sqrt(1+x^3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

f is a strictly monotonic differentiable function with f^(prime)(x)=1/(sqrt(1+x^3))dot If g is the inverse of f, then g^(prime prime)(x)= a. (2x^2)/(2sqrt(1+x^3)) b. (2g^2(x))/(2sqrt(1+g^2(x))) c. 3/2g^2(x) d. (x^2)/(sqrt(1+x^3))

f is a strictly monotonic differentiable function with f'(x)=(1)/(sqrt(1+x^(3)))* If g is the inverse of f, then g^(x)= a.(2x^(2))/(2sqrt(1+x^(3))) b.(2g^(2)(x))/(2sqrt(1+g^(2)(x))) c.(3)/(2)g^(2)(x) d.(x^(2))/(sqrt(1+x^(3)))

If f(x)=(x)/(sqrt(1-x^(2))), g(x)=(x)/(sqrt(1+x^(2))) then (fog)(x)=

If f(x)=(x)/(sqrt(1-x^(2))),g(x)=(x)/(sqrt(1+x^(2))) then ( fog )(x)=

g(x) is the inverse of function f(x), find (d^(2)f)/(dx^(2))(1),g(x)=x^(3)+e^((x)/(2))

If f(x)=x/(sqrt(1-x^2)),g(x) = x/(sqrt(1+x^2)) , then d/(dx)(fog(x)) =

If f(x)=1+1//x, g(x)=sqrt(1-x^(2)) , then the domain of f(x)-g(x) is

int_( then )(x-1)(dx)/(x^(2)(sqrt(2x^(2)-2x+1)))=(sqrt(f(x)))/(g(x))+c

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

Consider the functions f(x)=sqrt(x-2) , g(x)=(x+1)/(x^2-2x+1) Find (f+g)(x)