Home
Class 12
MATHS
The function y=x^(4)-8x^(3)+22x^(2)-24x+...

The function `y=x^(4)-8x^(3)+22x^(2)-24x+10` attains local maximum of minimum at `x=a, x = b and x = c (a lt b lt c)`. Then a, b and c are in

Promotional Banner

Similar Questions

Explore conceptually related problems

The function y=x^(4)-8x^(3)+22x^(2)-24x+10 attains local maximum or minimum at x=a, x=b and x=c (a < b < c) .Then a-2b+c=

f(x)=x^(4)-8x^(3)+22x^(2)-24x+20 has minimum value at x =

The function f(x)=e^(x^(3)-6x^(2)+10) attains local extremum at x = a and x = b (a < b), then the value of a+b is equal to

The function f(x)=e^(x^(3)-6x^(2)+10) attains local extremum at x = a and x = b (a < b), then the value of a+b is equal to

24x^(3)+12x^(2)-8x b y 4x

The function f(x)=2|x|+|x+2|=||x|2|-2|x|| has a local minimum or a local maximum at x= -2 (b) -2/3 (c) 2 (d) 2/3

If f(x)=x^3+a x^2+b x+c has a maximum at x=-1 and minimum at x=3 . Determine a ,\ b and c .

The function f(x)=sqrt(a x^3+b x^2+c x+d) has its non-zero local minimum and local maximum values at x=-2 and x = 2 , respectively. If a is a root of x^2-x-6=0 , then find a,b,c and d.