Home
Class 10
MATHS
If the nth term of a progression be a li...

If the nth term of a progression be a linear expression in `n` prove that this progression is an AP.

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) The nth term of a progression is 2n+1. Prove that it is an A. P. Also find its 5th term. (ii) The nth term of a progression is linear expansion in 'n' . Show that it is an A.P. (iii) The nth term of a progression is (n^(2)+1) . Show that it is not an A.P.

(a) The nth term of a progression is (3n + 5) . Prove that this progression is an arithmetic progression. Also find its 6th term. (b) The nth term of a progression is (3 - 4n) . Prove that this progression is an arithmetic progression. Also find its common difference. (c) The nth term of a progression is (n^(2) - n + 1). Prove that it is not an A.P.

(a) The nth term of a progression is (3n + 5) . Prove that this progression is an arithmetic progression. Also find its 6th term. (b) The nth term of a progression is (3 - 4n) . Prove that this progression is an arithmetic progression. Also find its common difference. (c) The nth term of a progression is (n^(2) - n + 1). Prove that it is not an A.P.

If the n-th term of an arithmetic progression is 5n+3 , then 3rd term of the arithmetic progression is

If the n-th term of an arithmetic progression is 5n+3 , then 3rd term of the arithmetic progression is

If the n-th term of an arithmetic progression is 5n+3 , then 3rd term of the arithmetic progression is

The sum of 'n' terms of a progression is (n^(2)+5n). Prove that it is arithmetic progression. Also find its common difference.

Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2. The ratio of their first term is

Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2. The ratio of their first term is