Home
Class 12
MATHS
A function y = f(x) satisfies the condi...

A function `y = f(x)` satisfies the condition `f'(x) sin x + f(x) cos x=1 ,f(x)` being bounded when `x->0`. If `I= int_0^(pi/2) f(x) dx` then (A) `pi/2ltIltpi^2/4` (B) `pi/4ltIltpi^2/2` (C) `1ltIltpi/2` (D)`0ltIlt1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :

Find the function f(x) if it satisfies the condition f(x)=x+int_0^(pi//2)sin(x+y)f(y)dydot then find 'f(x)

If the function y=f(x) satisfies f'(x)+f(x)cot x-2cos x=0,f((pi)/(2))=1 then f((pi)/(3)) is equal to

A function y=f(x) satisfies A function y=f(x) satisfies f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2 and f(1)=0 . The value of f(1/2) then

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If int_(0)^(pi) x f (cos^(2) x + tan ^(4) x ) dx = k int_(0)^(pi//2) f(cos^(2) x + tan ^(4) x ) dx then k =