Home
Class 12
MATHS
|[1,omega,omega^2],[omega,omega^2 ,1],[o...

`|[1,omega,omega^2],[omega,omega^2 ,1],[omega^2, 1,omega]|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following determinants. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]]

Fill in the blanks with appropriate answer from the bracket. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]] =_________

If omega is a complex cube root of unity, show that ([[1,omega,omega^2],[omega,omega^2, 1],[omega^2, 1,omega]]+[[omega,omega^2, 1],[omega^2 ,1,omega],[omega,omega^2, 1]])[[1,omega,omega^2]]=[[0, 0 ,0]]

If omega is a complex cube root of unity then a root of the equation |[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]|=0 is

Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]] =0

If omega is a complex cube root of unity, show that [[1 , omega, omega^2], [ omega, omega^2, 1],[ omega^2, 1, omega]] [[1],[ omega],[ omega^2]]=[[0],[ 0],[ 0]]

Let omega be the complex number cos (2 pi)/(3)+i sin (2 pi)/(3) . Then the number of distinct complex number z satisfying [[z+1,omega,omega^(2)],[omega,z+omega^2,1],[omega^(2),1,z+omega]] = 0 is equal to

Let omega be the complex number cos(2pi/3)+isin(2pi/3) Then the number of distinct complex numbers z satisfying abs[[z+1,omega,omega^2],[omega,(z+omega^2),1],[omega^2,1 ,z+omega]]=0 is equals to

If omega is complex cube root of 1 then S.T [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]