Home
Class 14
MATHS
Find the value of x which satisfies the ...

Find the value of `x` which satisfies the relation `log_(10) 3+log_(10) (4x+1)=log_(10) (x+1)+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

Find the values of x satisfying the equation |x-2|^(log_(3)x^(4)-3log_(x)9)(x-2)^(10)=1 .

The value of x satisfying the equation x + log_(10) (1 + 2^x) = x log_10 5 + log_10 6 is

The value of x satisfying the inequation x^(1/(log10^x)).log_10xlt1 , is

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

Find the values of x satisfying the inequalities: log_(0.1)(4x^(2)-1)>log_(0.1)3x

x^((log_(10)x+7)/(4))=10^(log_(10)x+1)