Home
Class 12
MATHS
The simplified form of f(x) = |x-2| + |2...

The simplified form of `f(x) = |x-2| + |2-x|, -3 lt= x lt= 3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|+|x-2|+|x-3| when 2 lt x lt 3 is

If f(x)=|x-1|+|x-2|+|x-3|,2 lt x lt 3 , then f is

If |x - 2| lt 3 then -1 lt x lt 5 .

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Find the Continuity of function f(x) . f(x) = {{:(|x|+3, if, x le -3),(-2x, if, -3 lt x lt 3),(6x+2,if,x ge 3):}

If 2 lt x lt 3 , then :

f(x) is defined as f(x) = {{:(|x|+[x],-1lt x lt 1,),(x+|x|,1 le x lt 2,),(|x|[x],2 le x lt 3,):} then the number of points of dicontinuity of f(x) is

The relation f is defined by f(x)={x^2,0lt=xlt=3 3x ,3lt=xlt=10 The relation g is defined by g(x)={x^2,0lt=xlt=3 3x ,2lt=xlt=10 Show that f is a function and g is not a function.