Home
Class 11
PHYSICS
Find the projection of vec(a) = 2 hat(i)...

Find the projection of `vec(a) = 2 hat(i) - hat(j) + hat(k)` on `vec(b) = hat(i) - 2 hat(j) + hat(k)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the projection of vec(a)=(2hat(i)-hat(j)+hat(k)) on vec(b)=(hat(i)-2hat(j)+hat(k))?

The projection of vec(a)=2hat(i)-hat(j)+hat(k) on vec(b)=hat(i)-2hat(j)+hat(k) is equal to :

Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on vec(b)=hat(i)+2hat(j)+hat(k)

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

Write the projection of vec(b) + vec(c ) on vec(a) , where vec(a) = 2hat(i) - 2hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 2hat(k) and vec(c ) = 2hat(i) - hat(j) + 4hat(k) .