Home
Class 12
MATHS
The minimum value of f(x)=2^(((log8 3))...

The minimum value of `f(x)=2^(((log_8 3))cos^2x)+3^(((log_8^2))sin^2 x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=2^((log_(8)^(3))cos^(2)x)+3^((log_(8)^(2))sin^(2))x is

The minimum value of 2^((log_(6)3) cos^(2)x ) + 3^((log_(6)2)sin^(2)x) is

The minimum value of 1-8sin^(2) x cos^(2) x is

The difference of maximum and minimum value of f(x)=log_(2)((5cos x-12sin x+39)/(13))

For x in[1,16],M and m denotes maximum and minimum values of f(x)=log_(2)^(2)x-log_(2)x^(3)+3 respectively,then value of (2M-4m) is-

Find the maximum and minimum values of f(x)=sec x+log cos^(2)x,0

log_(sin(x^(2)-8x+23))>(3)/(log_(2)(sin x))

If f (x) = sin (log x) then the value of f(xy)+f((x)/(y))-2f (x) cos (log y) is-

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to