Home
Class 12
MATHS
यदि f(x)=(1)/(sqrt(18-x^(2))) है, तब l...

यदि `f(x)=(1)/(sqrt(18-x^(2)))` है, तब ` lim_(x rarr 3 ) (f(x)-f(x))/(x-3)` का मान क्या होगा ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(1)/(sqrt(18-x^(2))) The value of Lt_(x rarr3)(f(x)-f(3))/(x-3) is

Let f(x)=(1)/(sqrt(18-x^(2))) What is the value of lim_(xto3) (\f(x)-f(3))/(x-3) ?

If f(x)=-sqrt(25-x^(2)) then find lim_(x rarr1)(f(x)-f(1))/(x-1)

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

If F(x)=sqrt(9-x^(2)), then what is lim_(x rarr1)(F(x)-F(1))/(x-1) equal to

If f(x) = sqrt((x-sinx)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) =

यदि f' (a) विधमान है तब lim_(x to a) (x f(a)-a f(x))/(x-a)=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(x)=sqrt((x-sinx)/(x+cos^2x)) , then lim_(x rarr infty)f(x) is