Home
Class 12
MATHS
If f(4)=4,f'(4)=1, then lim(x in4) (2-sq...

If `f(4)=4,f'(4)=1,` then `lim_(x in4) (2-sqrt(f(x)))/(2-sqrt(x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

If f(1)=1,f'(1)=2 then lim_(x rarr1)(sqrt(f(x)-1))/(sqrt(x)-1) is equal to

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

If f(4)=g(4)=2;f'(4)=9;g'(4)=6 then lim_(x rarr4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to

If f(4)=g(4)=f'(4)=9,g'(4)=6, then (lim_(x rarr)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to 3sqrt(2)b(3)/(sqrt(2))c.0d .does not exists

If f(4)=g(4)=2 , f^(prime)(4)=9,g^(prime)(4)=6, then (lim)_(xto4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to (a) 3sqrt(2) b. 3/(sqrt(2)) c. 0 d. does not exists

If f(1)=1,f'(1)=2 , then lim_(xto1)(sqrt(f(x))-1)/(sqrt(x)-1) is a)2 b)4 c)1 d) 1/2