Home
Class 12
MATHS
The straight line x+y touches the parabo...

The straight line x+y touches the parabola `y=x-x^(2)` then k =

Promotional Banner

Similar Questions

Explore conceptually related problems

The straight line x+y= k touches the parabola y=x-x^(2) then k =

Prove that the straight line x+y=1 touches the parabola y=x-x^(2)

The line x+y=k touches the parabola y=x-x^(2) if k=

If the line x+y+2 =0 touches the parabola y^(2)=kx then k=

If the line x+y=a touches the parabola y=x-x^(2), then find the value of a.

Statement I Straight line x+y=k touch the parabola y=x-x^2 , if k=1. Statement II Discriminant of (x-1)^2=x-x^2 is zero.

Statement I Straight line x+y=k touch the parabola y=x-x^2 , if k=1. Statement II Discriminant of (x-1)^2=x-x^2 is zero.

If the line 2x+3y+k=0 touches the parabola x^(2)=108y then k =

Statement I Straight line x+y=lamda touch the parabola y=x-x^2 , if k=1. Statement II Discriminant of (x-1)^2=x-x^2 is zero.