Home
Class 12
MATHS
[f(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((...

[f(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......oo],[" then at "x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+...oo term then at x=0,f(x)

If f(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+…… upto, oo , then

If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+ ....oo term then at x=0,f(x)

f(x)=(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+(x^(2))/((1+x^(2))^(3))+............oo is f(x) continuous at the origin? Give reasons for your answer.

If a function f(x) is given by f(x)=(x)/(1+x)+(x)/((x+1)(2x+1))+(x)/((2x+1)(3x+1))+...oo then at x=0,f(x)

If f(x)=x+x/(1+x)+x/((1+x)^(2))+………….oo , then at x=0, f(x)

Statement 1: lim_ (x rarr oo) ((1 ^ (2)) / (x ^ (3)) + (2 ^ (2)) / (x ^ (3)) + (3 ^ (2)) / (x ^ (3)) + ...... + (x ^ (2)) / (x ^ (3))) = lim_ (x rarr oo) (1 ^ (2)) / (x ^ ( 3)) + lim_ (x rarr oo) (2 ^ (2)) / (x ^ (3)) + ...... + lim_ (x rarr a) (x ^ (2)) / (x ^ (3)) lim_ (x rarr a) (f_ (1) (x) + f_ (2) (x) + ... + f_ (n) (x)) = lim_ (x rarr a) f_ (1) (x) + lim_ (x rarr a) f (x) + ...... + lim_ (x rarr a) f_ (n) (x)

f(x)={(x)/(1+x)+(x)/((1+x)(1+2x))+(x)/((1+2x)(1+3x))+....n terms} and x gt 0 then Lt_(x to oo)f(x)=