Home
Class 12
MATHS
f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a0...

`f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a0,\ \ \ for\ x=a` at `x=a`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a,\ \ \ 0\ \ \ if\ x=a at x=a

f(x)={|x-a|sin((1)/(x-a)),quad f or x!=a0,quad f or x= at x=a

If f(x)=sin((1)/(x)), then at x=0

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

f(x) = (x - [x]) sin ((1)/(X)) , at x = 0 , f is

The function f(x)=(3sin x-sin3x)/(x^(3)) for x!=0;f(0)=1 at x=0 is

Show that f(x) = x sin ((1)/(x)), x ne 0 , f(0) = 0 is continuous at x = 0

The function f(x)=(3sin x-sin 3x)/(x^(3))" for "x ne 0, f(0) =1 at x=0 is

If f(x)=x sin(1/x), x!=0 then (lim)_(x->0)f(x)=