Home
Class 12
MATHS
Given that the slope of the tangent to a...

Given that the slope of the tangent to a curve ` y = f(x) ` at any point ` (x, y )` is `(2y )/ ( x ^ 2 )`. If the curve passes through the centre of the circle ` x ^ 2 + y ^ 2 - 2 x - 2y = 0 ` , then its equation is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The slope of the tangent to a curve at any point (x,y) is (3y+2x+4)/(4x+6y+5) . If the curve passes through (0,-1), find the equation of the curve.

If the slope of tangent at point (x,y) of curve y=f(x) is given by (2y)/(x^(2)) .If this curve passes through the centre of the circle x^(2)+y^(2)-2x-2y=0. Then the curve is :

If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is (x^(2)-4x+y+8)/(x-2) , then this curve also passes through the point:

The slope of the tangent at a point P(x, y) on a curve is (- (y+3)/(x+2)) . If the curve passes through the origin, find the equation of the curve.

The gradient (slope) of a curve at any point (x,y) is (x^(2) -4)/(x^(2)) . If the curve passes through the point (2,7) , then the equation of the curve is. . . .

The slope of the tangent to a curve, y = f(x) at (x, f(x)) is 2x+1. If the curve passes through the point (1,2) , then the area of the region bounded by the curve, the x -axis and the line x=1

The slope of the tangent to a curve y=f(x) at (x,f(x)) is 2x+1. If the curve passes through the point (1,2) then the area of the region bounded by the curve, the x-axis and the line x=1 is

If a curve passes through the point (1, -2) and has slope of the tangent at any point (x,y) on it as (x^2-2y)/x , then the curve also passes through the point

If a curve passes through the point (1, -2) and has slope of the tangent at any point (x,y) on it as (x^2-2y)/x , then the curve also passes through the point